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In interferometry and optical testing, system wave-front measurements that are analyzed on a restricted sub-
domain of the full pupil can include predictable systematic errors. In nearly all cases, the measured rms
wave-front error and the magnitudes of the individual aberration polynomial coefficients underestimate the
wave-front error magnitudes present in the full-pupil domain. We present an analytic method to determine
the relationships between the coefficients of aberration polynomials defined on the full-pupil domain and those
defined on a restricted concentric subdomain. In this way, systematic wave-front measurement errors intro-
duced by subregion selection are investigated. Using vector and matrix representations for the wave-front
aberration coefficients, we generalize the method to the study of arbitrary input wave fronts and subdomain
sizes. While wave-front measurements on a restricted subdomain are insufficient for predicting the wave
front of the full-pupil domain, studying the relationship between known full-pupil wave fronts and subdomain
wave fronts allows us to set subdomain size limits for arbitrary measurement fidelity. © 2001 Optical Society
of America

OCIS codes: 220.1010, 000.3870, 220.4840, 120.3180.
1. INTRODUCTION
In interferometric testing of optical systems, a primary
goal is to measure, with the highest possible accuracy, the
wave front produced by a test optic. Typically, an inter-
ferogram fringe pattern or a series of patterns is projected
onto a CCD camera, and one of a host of fringe pattern
analysis methods is used to recover the underlying wave-
front phase across the measurement area. Wave-front
analysis with Zernike polynomials1–3 requires the defini-
tion of a unit-circle coordinate system on a subdomain of
the total collected data. Based on the pixels that define
the interferogram image, the chosen subdomain is actu-
ally a discrete approximation to the unit circle on which
the continuous Zernike polynomials are defined.

The selection of an appropriate subdomain is often a
subjective procedure that excludes some of the data at the
outermost edges of the interferogram. A low signal-to-
noise ratio or diffraction from the aperture edges often
makes the inclusion of the edge data problematic and
thus motivates the selection of a restricted domain size.
Yet the exclusion of any data from the full pupil reduces
the effective numerical aperture of the measurement and
changes the measured wave-front result, often reducing
the apparent magnitude of the measured aberrations.

Estimation of the full pupil’s wave front based on sub-
domain measurement is problematic for two main rea-
sons. Foremost is the fact that the behavior of the wave
front in the excluded regions is not measured; therefore
extrapolation from the measured region introduces high
uncertainty. Second, if the aberration polynomials (i.e.,
the basis set of functions that define individual compo-
nent aberrations) used in the wave-front fitting are or-
thogonal on the full domain, yet the data used for the fit
come only from a restricted domain, then the fitted values
of the aberration polynomial coefficients may be
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unstable.1 This result comes primarily from the fact that
the full pupil’s aberration polynomials are generally not
orthogonal on the restricted domain.

When aberration polynomials are not orthogonal on the
measurement domain, fitting can become sensitive to
small errors in the input. This result is well-known from
least-squares error-minimization methods of polynomial
fitting.4,5 (Some authors have shown that the numerical
inversion in the least-squares method is not unstable, as
is traditionally thought.2,6 However, for the higher-
ordered polynomial terms, the limitations of discrete sam-
pling become especially problematic.) For this reason, in
wave-front fitting, it is common first to define an interme-
diate set of orthogonal aberration polynomials that are
appropriate to the discrete subdomain of measurement,
then to fit the wave front on that domain by orthogonal
projection, and last to transform the resultant coefficients
to the desired basis.1 While our goal is to measure the
wave front on the full-pupil domain, since the data are de-
fined only on the subdomain, we must first perform the
fitting by using orthogonal basis functions that are appro-
priate for the subdomain.

While wave-front measurements on a restricted subdo-
main are generally insufficient for predicting the wave
front of the full-pupil domain, studying the relationship
between known full-pupil wave fronts and subdomain
wave fronts allows us to set a minimum size limit for sub-
domains to achieve arbitrary measurement fidelity.
Quantifying these measurement errors leads to the defi-
nition of measurement tolerances on the capture size and
on the displacement of the subdomain.

Measurement errors and uncertainties of this sort are
always proportional to magnitudes of the input wave-
front aberrations. Therefore the tolerances that we set
are defined relative to the wave-front aberration magni-
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tudes: In absolute terms, measurement errors are al-
ways reduced as the wave-front error tends to 0.

In this analysis, we derive the effect of the restricted
subdomain size on the measurement fidelity for each in-
dividual Zernike polynomial term and then generalize the
results by linear superposition to fit arbitrary wave
fronts. Vector and matrix notation is used to simplify the
description and the calculations. The method is applied
to circular pupils, for which the well-known Zernike poly-
nomials are an appropriate orthogonal basis for the defi-
nition of wave-front aberrations. A similar derivation
may be performed for arbitrary pupil shapes.

The treatment of wave-front fitting on nonconcentric,
or displaced, subdomains will be the subject of a separate
paper by the authors.

2. DEFINITION OF ZERNIKE
POLYNOMIALS
We begin with a strictly real definition of the Zernike
polynomials Un

m(r, u), functions of the polar coordinates r
and u. The indices m and n describe the azimuthal and
radial order of the polynomials.
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The binomial coefficient is defined in the standard way:
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For these definitions, the following conditions hold: n
> umu > 0, and n 2 m is even. In later equations, the
functional dependence of Un

m on r and u is implicit; Rn
m is

a function of r alone.
It is important to note that the polynomial magnitudes

used here are not scaled to normalize the rms magnitude
of the individual terms, a convention commonly used else-
where. Rather, the polynomials are bounded on the
range [21, 1], and this is referred to as unit magnitude.

The expression(s) for the radial component of the
Zernike polynomials can be simplified by using a series
coefficient Cn

m(s), defined as
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Note that Cn
m 5 Cn

2m . The radial function can now be
written concisely as

Rn
m~r ! 5 (

s50

n8

Cn
m~s !rn22s. (6)

3. WAVE-FRONT FITTING ON THE
SUBDOMAIN
Consider a centered circular subdomain of the unit circle
on which the Zernike polynomials are defined; let this
subdomain have a radius p such that 0 , p < 1. This is
shown in Fig. 1. Given an input wave front on the full
unit circle, our goal is to find a general expression for the
wave front defined on the subdomain with the new unit
radius scaled to the radius p. We can first find a solution
for the subdomain Zernike polynomial series that fits a
single arbitrary input Zernike polynomial term on the full
domain. Then, by linear superposition, we generalize the
result for an arbitrary input wave front, represented as a
Zernike polynomial series. To avoid confusion, we will
refer to the polynomials on the full domain as the ‘‘input’’
and on the restricted subdomain as the ‘‘fit.’’

Fig. 1. Centered circular subdomain of the unit circle, with ra-
dius p.
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A. Fitting a Single Input Zernike Polynomial
Consider a single arbitrary input Zernike polynomial
term Un

m , defined on the full unit circle. Let r8 be the
radius defined on the full domain. Making the substitu-
tion r [ r8/p scales the radius on the subdomain, r, to
reach unity at the subdomain edge. In this way, r8
5 pr. The expression for the radial dependence of the
input wave front across the subdomain is

Rn
m~ pr ! 5 (

s50

n8

Cn
m~s !~ pr !n22s

5(
s50

n8

Cn
m~s !pn22srn22s. (7)

Orthogonality dictates that the polynomial terms in the
fit wave front must match the azimuthal dependence of
the input wave front exactly: The fit terms all have the
same m value as the input wave front. (This point is eas-
ily understood by separating azimuthal components of the
aberration polynomials from the radial parts and apply-
ing the orthogonality conditions.) This fact simplifies the
calculations significantly, allowing us to concentrate only
on the radial dependence of the fit wave front.

The fit wave front W8 may be written as a Zernike poly-
nomial series with coefficients an1m :

W8 5 (
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m . (8)

Here the sum over m reduces to one term, the m value of
the input wave front. If the radial dependence alone is
considered, Eqs. (7) and (8) yield the following coupled
equations:
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A solution can be found for the fit wave-front Zernike se-
ries coefficients by matching the coefficients of the powers
of r:
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Each row corresponds to the coefficients of a different
power of r. The first row represents the coefficients of rn,
the second row is for rn22, the third row is for rn24, and
so forth, down to terms of order n 2 umu in r. We call the
matrix G, and the two column vectors are a and p, respec-
tively. Thus Ga 5 p, and the elements of a can be found
by matrix inversion: a 5 G21p. Since there is a sepa-
rate G matrix for each allowed pair of n and umu values,
the notation Gnm will be used to remove ambiguity. Since
Cn

m equals Cn
2m , Gnm is equivalent to Gn 2m.

The element of Gnm in the ith row and the jth column,
G ij

nm , is given by
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Since Gnm is a lower-triangular matrix, its inverse will
also be lower triangular. The elements of p, pj , are
given by
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The first few elements of a can be read from Eq. (10) by
inspection:
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Because Gnm is lower triangular, the solution for each co-
efficient anm relies only on the coefficients above it—that
is, the coefficients of higher radial order. Table 1 con-
tains explicit solutions for arbitrary p, up to the ninth
Zernike polynomial term. This matrix will be repre-
sented by H( p) and is called the shrink matrix. The pa-
rameter p is included with the matrix notation to empha-
size the functional dependence. The columns of H( p)
are composed of the coefficient vectors a, evaluated for
each allowed pair of m and n values.

For values of p near 1, good approximations for the first
9 3 9 elements of the shrink matrix are shown in Table
2. Here the small quantity q is defined as 1 2 p. Table
3 evaluates the shrink matrix coefficients for the p
5 99% and 98% cases. Table 4 contains an approxima-

tion of the nonzero elements of the shrink matrix for
terms with n values up to 10 and all allowed m values.
Terms of second order and higher in q are dropped in the
approximation.
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Table 1. Matrix of Fit Coefficients for Single Input Zernike Polynomial Terms of Unit Magnitudea

Table 2. Approximate Shrink Matrix H( p)a
B. Shrink Matrix Elements
The elements of H( p) were derived in Subsection 3.A
from the column vectors a, calculated by matrix inversion
or back-substitution from Eq. (10). It is useful, however,
to have an explicit definition of those individual elements.
The individual elements can be found from the solution
for a, a 5 G21p, with the appropriate n and m input and
output values. Consider an element of a that corre-
sponds to the column of H( p) with input parameters n0
and m0 . We can define this column by an0m0. Then the
element of an0m0 that becomes a coefficient of Un

m in the
wave-front representation is anm

n0m0.
Some confusion may arise from the fact that we are

treating the index pair nm as a single index. This step is
necessary in the matrix formalism, where rows and col-
umns are described by separate, single indices. Since
only some nm pairs are allowed, a relationship between
nm and the single index i or j must be defined. This re-
lationship can be defined in any self-consistent way.7–10

We have already discussed the fact that orthogonality
forces all anm

n0m0 terms with m not equal to m0 to be 0.
From a 5 G21p, we can write an explicit solution for
anm

n0m0, considering only (n0 , m0) and allowed values of
(n, m):

anm
n0m0 5 dmm0

@n < n0#(
j51

L

@~Gn0m0!21# ijpj. (16)

In Eq. (16), the row index i represents the pair of indices
nm. The bracketed expression represents a binary op-
erator, behaving like the Heaviside unit function11 (also
called the step function): When the expression expr is
true, [expr] equals 1; otherwise, [expr] equals 0. By Eq.
(12), we can write the pj terms explicitly in terms of pow-
ers of the scalar p and Cn

m :



2150 J. Opt. Soc. Am. A/Vol. 18, No. 9 /September 2001 K. A. Goldberg and K. Geary
anm
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These are the matrix elements of H( p).

C. Shrink Matrix Formulation
With the elements of the shrink matrix now defined, the
results can be generalized for an arbitrary input wave
front. As in Subsection 3.B, we represent the allowed n
and m indices in terms of a single parameter j. The in-
put wave front W can be represented by its Zernike coef-
ficients as a vector w defined on the basis of Zernike poly-
nomials, U. W may be written as

W 5 (
j

wjUj 5 U • w 5 UTw. (18)

With use of the shrink matrix H( p), the fit wave-front
coefficient vector on the centered subdomain wp is
Table 3. Matrix of Fit Coefficients for Single Input Zernike Polynomial Terms of Unit Magnitude
with p 5 99% and p 5 98% Subdomain Radiia

Table 4. Approximate Nonzero Elements of the Shrink Matrix on a Subdomain of Radius p
with q Ä 1 À pa

U0
0 → U0

0 U8
0 → p8U8

0 2 14qU6
0 2 10qU4

0 2 6qU2
0 2 2qU0

0

U1
61 → pU1

61 U8
62 → p8U8

62 2 14qU6
62 2 10qU4

62 2 6qU2
62

U2
0 → p2U2

0 2 2qU0
0 U8

64 → p8U8
64 2 14qU6

64 2 10qU4
64

U2
2 → p2U2

2 U8
66 → p8U8

66 2 14qU6
66

U3
61 → p3U3

61 2 4qU1
61 U8

68 → p8U8
68

U3
63 → p3U3

63 U9
61 → p9U9

61 2 16qU7
61 2 12qU5

61 2 8qU3
61 2 4qU1

61

U4
0 → p4U4

0 2 6U2
0 2 2qU0

0 U9
63 → p9U9

63 2 16qU7
63 2 12qU5

63 2 8qU3
63

U4
62 → p4U4

62 2 6U2
62 U9

65 → p9U9
65 2 16qU7

65 2 12qU5
65

U4
64 → p4U4

64 U9
67 → p9U9

67 2 16qU7
67

U5
61 → p5U5

61 2 8qU3
61 2 4qU1

61 U9
69 → p9U9

69

U5
63 → p5U5

63 2 8qU3
63 U10

0 → p10U10
0 2 18qU8

0 2 14qU6
0 2 10qU4

0 2 6qU2
0 2 2qU0

0

U5
65 → p5U2

65 U10
62 → p10U10

62 2 18qU8
62 2 14qU6

62 2 10qU4
62 2 6qU2

62

U6
0 → p6U6

0 2 10qU4
0 2 6qU2

0 2 2qU0
0 U10

64 → p10U10
64 2 18qU8

64 2 14qU6
64 2 10qU4

64

U6
62 → p6U6

62 2 10qU4
62 2 6qU2

62 U10
66 → p10U10

66 2 18qU8
66 2 14qU6

66

U6
64 → p6U6

64 2 10qU4
64 U10

68 → p10U10
68 2 18qU8

68

U6
66 → p6U6

66 U10
610 → p10U10

610

U7
61 → p7U7

61 2 12qU5
61 2 8qU3

61 2 4qU1
61

U7
63 → p7U7

63 2 12qU5
63 2 8qU3

63

U7
65 → p7U7

65 2 12qU5
65

U7
67 → p7U7

67

a For a given input aberration with unit magnitude of a single Zernike polynomial term Un
m , the components of the fit wave front are shown. The results

shown assume that p ' 1 and are thus valid for small values of q only. Only the lowest-ordered q-dependent components are shown.
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wp 5 H~ p !w. (19)

And the fit wave front may be written as

W8 5 U • wp 5 U • @H~ p !w#. (20)

4. INTERPRETATION OF THE RESULTS
In the interpretation, we must be careful to avoid the
temptation to extrapolate beyond the restricted subdo-
main into the area where the wave front is not measured.
We cannot assume measured values for the input wave
front across the full pupil when only the subdomain fit
wave front has been measured. However, we can say
that given a well-behaved wave front across the full pupil,
the error magnitudes that we can expect to observe in the
subdomain wave front are as shown in the tables pre-
sented here. To ensure high accuracy, we must choose
the size of the subdomain large enough to reduce the rela-
tive measurement errors to below acceptable limits.
Likewise, the measurement uncertainties can be pre-
dicted in part by the measurement errors revealed by the
calculations presented here. It is important to note that
the most difficult errors to account for are those intro-
duced by the presence of higher-ordered aberrations,
which generally couple strongly into the measurement
lower-ordered aberrations.

The coefficients of the shrink matrix contain the rela-
tive systematic error magnitude information that can be
used to set error tolerances or bounds on the minimum
size of the measurement subdomain. In this section, two
examples are given: The first is specific, and the second
is general.

A. Example: Spherical Aberration
As discussed above, when a hypothetical input wave front
consists of a single Zernike polynomial of unit magnitude,
the fit wave front measured on the restricted subdomain
will not match the input exactly. Consider, for example,
the case of an input wave front with only spherical
aberration—an aberration term of fourth order in r. The
form of spherical aberration in the Zernike polynomial de-
scription is

U4
0~r, u! 5 6r4 2 6r2 1 1. (21)

When the input wave front has unit magnitude of spheri-
cal aberration and the restricted subdomain has a rela-
tive radius p, then the fit wave front will have a spherical
aberration magnitude of p4: a relative error of 1 2 p4,
underestimating the input wave-front error magnitude.
In addition, because of the presence of the second-order
and constant components, spurious defocus and piston
will appear in the fit wave front with magnitudes
23p2(1 2 p2) and (1 2 p)(2p 2 1), respectively, even
though no net defocus or piston was present in the input
wave front. (These magnitudes were read directly from
the j 5 8 column of Table 1.) If we define q equal to 1
2 p, as in Subsection 3.A, then the two error magnitudes

may be written approximately as 26q for defocus and
22q for piston.

In practice, reasonable values for p and q may be 99%
and 1%, respectively. In this case, a single wave of
spherical aberration in the input wave front will appear
as 0.96 wave of spherical aberration with 20.059 wave of
defocus and 20.019 wave of piston in the fit wave front.

B. Example: Arbitrary Input Wave Front
To further illustrate the operation of the shrink matrix,
we consider how it affects an arbitrary input wave front.
On the full-pupil domain, let the input wave front have
aberrations defined by the coefficient column vector w,
defined in the Zernike polynomial convention used
throughout this paper.8 Suppose that only the first nine
elements of w (piston through spherical aberration) con-
tain nonzero elements.

In a hypothetical interferometric measurement, a con-
centric subdomain of the full pupil is selected, and a unit-
circle coordinate system is defined based on this radius.
In the coordinates of the full pupil, the subdomain radius
is p. q is defined as 1 2 p. The approximate shrink ma-
trix, given in Table 2, enables us to quickly determine the
observed fit wave front on the restricted subdomain. The
approximate fit wave front w8 is given by

w8 5 1
w08

0

w18
1

w18
21

w28
0

w28
2

w28
22

w38
1

w38
21

w48
0

2 5 H~ p !w 5 1
w0

0 2 2qw2
0 2 2qw4

0

pw1
1 2 4qw3

1

pw1
21 2 4qw3

21

p2w2
0 2 6qw4

0

p2w2
2

p2w2
22

p3w3
1

p3w3
21

p4w4
0

2 .

(22)

The measurement error is contained in the differences be-
tween the full wave-front elements wn

m and the fit wave-
front elements, which can be read from Eq. (22). Again,
we must acknowledge that the truncation of the series at
spherical aberration, the ninth term, has limited contri-
butions from higher-ordered aberrations that may be
present experimentally.

C. General Error Estimation
In practice, the subdomain size may be selected based on
the relative or the absolute fit fidelity required in specific
aberration terms. The requirements become increas-
ingly more restrictive for terms of higher radial order.

Consider a single Zernike aberration polynomial term
of absolute magnitude a and radial order n in the input
wave front. With a restricted subdomain radius p, the
systematic error e in the measurement of that Zernike
term’s magnitude is given approximately by

e 5 a~1 2 pn! ' anq. (23)

Barring all other systematic error sources, to achieve an
accuracy of e, we must choose the subdomain radius to
satisfy

p . 1 2
e

an
. (24)

This follows from Eq. (23). If the error tolerance e were
set at 0.05 nm and the magnitude of spherical aberration
(fourth order) in the input wave front, a, were 0.25 nm,
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then p would be greater than 95%. This represents a
relative error tolerance of 20%. If e were 0.01 nm and a
were 0.25 nm, then p would be greater than 99%—a rela-
tive error tolerance of 4%.

Note that in Eq. (23) the error magnitude increases lin-
early with the radial order of the Zernike term under con-
sideration, with the absolute magnitude of the input
wave-front aberration, and with the fraction by which the
subdomain is smaller than the full domain.

As stated above, in this analysis one must be aware of
and not neglect the contributions of higher-ordered terms
than the term being considered. If they are present with
significant absolute magnitude, they may make the sub-
domain minimum size requirements stricter. Because of
the case-dependent nature of those considerations, the
contributions of higher-ordered terms are difficult to gen-
eralize.

5. CONCLUSION
Wave-front analysis with Zernike polynomials requires
the definition of a unit-circle domain on which a wave-
front fit is performed and the coefficients of aberration
polynomials are determined. On the discrete domain of
measurement, the definition of the unit circle is often
made on a restricted subdomain of the full wave-front
data in order to remove unreliable edge points from the
analysis. The subdomain selection can be a significant
and yet often a neglected systematic error and uncer-
tainty source in wave-front measurement. These errors
include a reduction in the apparent magnitude of some
wave-front aberrations and spurious contributions from
aberrations that may or may not be present in the full
wave front.

By studying the way in which aberrations on a full-
pupil domain map to aberrations on a restricted subdo-
main, we have developed a method for estimating mea-
surement errors. Dependent on the size of the restricted
subdomain and on the magnitude and the composition of
the wave-front errors, the method described can be used
to set tolerances on the minimum size of the restricted
subdomain that is required to achieve arbitrary fit fidel-
ity.

Using linear superposition of the aberration compo-
nents and a vector–matrix notation to represent the poly-
nomial coefficients, we can apply the method to arbitrary
wave-front aberrations defined by orthogonal aberration
polynomials. The analysis described here is applied to
circular pupils, for which the Zernike polynomials form
an appropriate basis to describe the aberrations. Specific
examples are given for all of the terms that appear in the
first 36 conventional Zernike polynomial terms.

Calculations show that the error magnitudes, and
hence the accuracy level, always scale with the magni-
tude of the aberrations in the input wave front and with
the radial order of constituent Zernike polynomial terms.
Thus the systematic errors are reduced as the wave-front
aberration magnitude is reduced; furthermore, the errors
are most significant for the measurement of the aberra-
tion terms with the highest radial order and in the pres-
ence of higher-order aberrations.

Address correspond to Kenneth A. Goldberg at the lo-
cation on the title page or by e-mail, kagoldberg@lbl.gov.
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